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ABSTRACT 
 

In order to study the strategic bidding behavior of electricity suppliers and test the 

electricity market design, the Day-Ahead electricity market is modeled as a multi-agent 

system with interacting agents including supplier agents, load serving entities, and a market 

operator. The profit maximizing objective of a supplier naturally requires the player to learn 

from its bidding experience and behave in an anticipatory way. With volatile Locational 

Marginal Prices (LMPs), ever-changing transmission grid conditions, and incomplete 

information about other market participants, decision making for a supplier is a complex task. 

A learning algorithm that does not require an analytical model of the complicated market but 

allows suppliers to learn from the past experience and act in an anticipatory way is a suitable 

approach to this problem. Q-Learning, an anticipatory reinforcement learning technique, has 

all these desired properties. Therefore, it is used in this research to model the learning 

behaviors of electricity suppliers in a Day-Ahead electricity market. Simulation of the market 

clearing results under the scenarios in which agents have learning capabilities is compared 

with the scenario where agents report true marginal costs. It is shown that, with Q-Learning 

and strategic gaming, electricity suppliers are making more profits compared to the scenario 

without learning. As a result, the LMP at each bus is substantially higher. 
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CHAPTER 1.  INTRODUCTION 
 

1.1  Research Motivation and Background 

Strategic bidding is an important issue that has been raised in many electricity 

markets, such as England and Wales wholesale electricity market in the 90s, and California 

electricity market during the energy crisis. Electricity prices change as a result of 

transmission network congestion, which may be caused by strategic bidding or heavy load. 

For PJM, the total congestion costs were $750 million in 2004 and $2.09 billion in 2005. 

Learning may allow larger electricity suppliers to use their market power and bid 

strategically. The most recognizable case is in England and Wales electricity market where 

the two largest firms bid strategically in a non-competitive manner to keep the price 

significantly higher than the competitive level. In California [1], electricity expenditure in the 

wholesale market increased from $2.04 billion in summer 1999 to $8.98 billion in summer 

2000. It is estimated that 59% of this increase was due to increased market power. Learning 

to bid in the wholesale market is also crucial for smaller electricity suppliers who have a 

desire to recover the cost of their investment in generation by avoiding over or under-bidding. 

Therefore, research on the learning behavior of electricity suppliers will provide insights into 

gaming in the market. This may allow market designers to develop appropriate market rules 

to discourage strategic bidding and enhance the market efficiency.  

 Researchers have used various learning methods to model electricity suppliers’ 

behavior. The learning configuration for suppliers in [2] is a version of stochastic reactive 

reinforcement learning developed by Alvin Roth and Ido Erev. In this configuration, agents 

have finite fixed action domains, are backward looking, and rely entirely on response 

learning. Average reward γ-greedy reinforcement learning was used in [3] to model the 

learning and bidding processes of suppliers. With this scheme, each supplier uses greedy 
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selection as its action choice rule with probability (1- γ), and random action selection with 

probability γ. Thus, γ determines the trade-off between exploitation of available information 

and exploration of untested actions. The trading agents modeled in [4] use GP-Automata to 

compute their bidding strategies for the current market conditions.  

 The objective of this thesis is to model the learning behaviors of suppliers in the 

electricity market. This thesis is focused on how to model electricity suppliers’ learning 

behavior by Q-Learning. The electricity market will be modeled as a Multi-agent system with 

three types of interacting agents: supplier agents, load serving entities, and the market 

operator. The effect of the suppliers’ learning behavior on the market clearing results is 

examined. In addition, load serving entities with a simple demand-side response behavior are 

considered in this multi-agent electricity market environment. 

1.2  Thesis Organization 

This thesis consists of five chapters. Chapter 2 provides a review on multi-agent 

systems, their applications to power systems and presents a multi-agent technique to model 

the Day-Ahead electricity market. Chapter 3 presents a literature review on multi-agent 

learning algorithms and applied Q-Learning to the modeling of suppliers’ learning behavior. 

Chapter 4 presents a case study of the proposed methods on a 5-bus transmission grid. 

Chapter 5 includes the conclusion of this research, and the suggestions for future work. 

1.3  Contents of This Thesis 

The objective of this thesis is to examine the learning behavior of electricity 

suppliers’ and its impact on the Day-Ahead electricity market. In addition, this thesis is 

concerned with the development of a Day-Ahead electricity market model using the multi-

agent methodology. 

Chapter 2 provides an introduction to multi-agent systems and a review of their 

applications to power systems. This chapter discusses the Foundation for Intelligent Physical 
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Agents, a popular standard that is used in most industrial and commercial multi-agent system 

applications. A multi-agent system model of the Day-Ahead electricity market is presented. 

The market operator, load serving entities, and supplier agents’ models are incorporated. 

Chapter 3 provides a literature review of the multi-agent learning algorithms. Multi-

agent learning algorithms are classified into three categories: Model-based approaches, 

Model-free approaches, and regret minimization approaches. In this research, Q-Learning, an 

anticipatory reinforcement learning technique, is selected for the study of the electricity 

suppliers’ learning behavior. 

Chapter 4 presents a case study of the proposed modeling methods on a 5-bus 

transmission grid. Simulation results of both the no-learning scenario and two learning 

scenarios are presented and compared. Simulation results indicate that Q-Learning helps 

electricity suppliers learn how to bid strategically under the condition of a simple demand-

side response model. With Q-Learning capabilities, electricity suppliers find their way to 

make more profits in the long term by sacrificing the immediate profits. 

Chapter 5 provides the key conclusions of this research and suggestions for the future 

work. 
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CHAPTER 2.  MULTI-AGENT SYSTEMS 
 

2.1  Introduction 

2.1.1  What is an Agent? 

There is not a single definition of an agent that is universally accepted. However, the 

following definition from the Wooldridge and Jennings [5] is commonly adopted in the field. 

An agent is a computer system that is situated in some environment, and that is capable of 

autonomous action in this environment in order to meet its design objectives.  

Note that the agent discussed here is actually a software entity. The two basic 

properties that an agent must have are autonomous, and situated. Autonomous means that a 

software agent must be able to operate without the direct intervention of people or other 

agents and has control over its own action and internal state. Situated means that a software 

agent is situated in some type of environment. These environments may be dynamic, 

unpredictable and unreliable. 

According to Jennings and Wooldridge, to make an agent “intelligent”, the software 

agent should be able to take flexible autonomous actions in order to meet its design 

objectives [6]. Flexible means an agent is reactive, proactive and social. By reactive, it is 

meant that the agent perceives its environment and responds in a timely fashion to changes 

that occur in the environment. By proactive, it is meant that the agent does not simply act in 

response to its environment but is able to achieve a goal by taking the initiative. By social, it 

is meant that in order to achieve its goals, the agent interact with people or other agents. 
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2.1.2  What is a Multi-Agent System? 

 A Multi-Agent System (MAS) is an organization of heterogeneous and self-motivated 

agents that interact with one another. The agents in MAS could have conflicting interests or 

they could coordinate with one another to accomplish the same mission. 

2.1.3  When and Why are Agents Useful? 

Reactive systems that maintain an ongoing interaction in some environment are 

inherently more difficult to design and implement [6]. One can classify these systems into 

three categories: open systems, complex systems, and ubiquitous computing systems. Some 

of the characteristics that these systems have are dynamic, highly complex, and unpredictable. 

With a better encapsulation, and modularity, the agent paradigm can develop a number of 

modular components that are specialized at solving a particular aspect of the complex, 

unpredictable system. In addition, with reactiveness and proactivenss, an agent can be relied 

upon to persist in achieving its goals, trying alternatives that are appropriate to the changing 

environment without continuous supervision and checking [7]. The Agent technology also 

helps to improve the efficiency of software development, especially when the data, control, 

expertise, or resources are physically or logically distributed. 

2.1.4  Agent Oriented Programming versus Object Oriented 

Programming 

Agent Oriented Programming has a higher level of encapsulation than Object 

Oriented Programming. An object encapsulates some state, and has some control over its 

own state in that it can only be accessed or modified via the methods that the object provides 

[6]. An agent encapsulates not only state, but also its own behavior. In contrast, an object 

does not encapsulate behavior: in other words, it has no control over the execution of its own 

methods. Note that the autonomous property of an agent allows it to have control over its 
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own actions. Due to this distinction, one should not think of agents as invoking methods 

(actions) on agents. Rather, agents are requesting actions to be performed [6]. The agent 

itself could also decide whether to act upon the request. 

2.1.5  Applications of Multi-Agent Systems in Power Engineering 

 The MAS technologies are being applied to an increasingly wide range of 

applications in power systems. These applications falls into four major categories: Modeling 

and Simulation, Monitoring and Diagnostics, System Restoration and Reconfiguration, and 

System Controls. 

2.1.5.1  Modeling and Simulation 

The MAS technologies have been used for modeling and simulation of different 

aspects of power engineering. A major application is the simulation of restructured electricity 

market. With the embedded learning capabilities, agents that are autonomous, proactive and 

reactive are well suited for modeling of various market participants in the electricity market. 

It has been shown that a well-designed software agent can emulate the offer behavior of 

human agents [8]. Thomas et al. proposed to use software agents to test electricity markets 

[9]. Five standardized agents – four different types of speculators and a marginal cost offer 

agent are designed to compete with human subjects in a central auction market. A multi-

agent trading platform for electricity contract market is constructed [10]. Customers’ 

response under time-of-use electricity pricing is studied in a Multi-Agent system [11]. An 

agent-based model is designed in [12] to support decentralized generation expansion in 

electricity market. 

2.1.5.2  Monitoring and Diagnostics 

 Major challenges in the power system diagnostic and monitoring applications include 

how to handle large volumes of raw data from different sources, how to convert those raw 
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data into meaningful information, and how to provide power engineers with correct 

information to support the decision making. These challenges could be overcome with the 

help of MAS technology. In [13], the authors designed and constructed the Protection 

Engineering Diagnostic Agents system (PEDA) for automated disturbance diagnosis. The 

PEDA system was implemented as an on-line post-fault analysis system for the Scottish 

Power Systems which significantly reduces the data retrieval, collection and interpretation 

burden on protection engineers. Condition Monitoring Multi-Agent System (COMMAS) for 

transformer condition monitoring was developed in [14]: the system is intended to provide 

decision support for operational engineers. A MAS was designed for fault detection, 

diagnostics, and prognostics of navy All-Electric Ships (AES) [15]. This fault diagnosis and 

prognosis tool will improve the reliability, availability, and survivability of AES, and support 

the drastic manning reduction requirements for future navy ships. 

2.1.5.3  System Restoration and Reconfiguration 

Nagata et al. suggests a multi-agent approach to restore a power system to a target 

network that has as many buses as possible [16]. In the proposed MAS, local bus agents 

formulate a restoration plan through negotiation, and then check the restoration plan with a 

global facilitator. In [17], a multi-agent-based approach for navy ship system electric power 

restoration is provided to restore the capacity as much as possible to serve the loads.  

Through negotiation among three different types of agents, the system can perform the 

restoration work using local information without a central controller. 

2.1.5.4  System Controls 

The distributed properties of MAS, and potential of local decision making make it 

better suited for certain control scenarios in a power system relative to conventional 

centralized control. There are some common features of those control scenarios. The system 

is highly complex so that optimum control is difficult to accomplish even with centralized 
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control and the control decision making time is limited. For example, in microgrid control, 

the operation of micro-sources, storage devices, and controllable loads is highly complex. In 

[18], MAS approach was used to control the microgrid. In the proposed method, Microgrid 

Central Controller coordinates the local controllers and decides whether to connect to the 

main grid, whereas Local Controllers control the distributed energy resources, production 

and storage units, and some of the local loads. Jung et al. proposed an application of multi-

agent system technologies for the development of strategic power infrastructure defense 

(SPID) system that is designed to prevent catastrophic failures and cascading sequences of 

events, an application of which is on adaptive load shedding [19]. 

2.2  The Foundation for Intelligent Physical Agents (FIPA) 

FIPA was established in 1996 as an international non-profit association to develop a 

collection of standards relating to software agent technology [20]. FIPA was formally 

reincorporated in mid-2005 as a standards committee of the IEEE Computer Society, lending 

credibility to the use of FIPA as standards for industrial and commercial multi-agent system 

applications. FIPA standards govern the basics of an agent architecture, including agent 

lifecycle management, inter-agent message transport, message structure, inter-agent 

interaction protocols, and security. Users are left with the flexibility to design an agent that 

accomplishes its goals. The most important ideas of FIPA are agent communication, agent 

management, and agent architecture. 

2.2.1  Agent Communication 

The FIPA-Agent Communication Language (ACL) states the message representing 

actions or communicative acts that are called speech acts or performatives [20]. There are 22 

performatives in communicative act library, which has 4 basis performatives: request, inform, 

confirm, and disconfirm. FIPA also standardizes a set of interaction protocols such as 

requests, query to coordinate multi-message actions. Different content languages can be 
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employed to express the content of FIPA-ACL. The most popular language FIPA semantic 

language (SL) is standardized and specified in [21]. 

2.2.2  Agent Management 

The second fundamental aspect of FIPA is addressed by agent management that 

establishes the logical reference model for creation, registration, location, communication, 

migration and operation of the agents. It specifies how a FIPA compliant agent can exist, 

operate and be managed. A FIPA compliant Agent Platform (AP) provides the physical 

infrastructure that consists of the machines, operating system, FIPA agent management 

components, the agents themselves, and any additional support software [20]. An AP has two 

utility agents: the Agent Management System (AMS) and the Directory Facilitator (DF). The 

AMS is mandatory, as it allocates agent identifiers (AIDs) to each agent that registered with 

it, keeps track of the status of an agent, and terminates the life an agent when it deregistered. 

The DF is optional; it provides yellow page services that allow every agent to advertise its 

services on a non-discriminatory basis. An AP also provides a Message Transport Service 

(MTS) to transport FIPA-ACL messages between agents on the same platform or within 

different platforms. 

2.2.3  Agent Architecture 

The FIPA Abstract Agent Architecture provides a common, unchanging point of 

reference for FIPA-compliant implementations that capture the most critical and salient 

features of an agent system [22]. Most important mandatory items specified in the 

architecture are the ACL message structure, message transport, agent directory services, and 

service directory services. As described in Section 2.2.2, the communication between two 

agents relies on a message transport service that transports FIPA-ACL messages. As 

mentioned in Section 2.2.1 the structure of a message is a set of key values written in FIPA-

ACL. The content of the message is expressed in a content language, such as FIPA-SL or 
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FIPA KIF [22]. Essentially, the two directory services allow agents to register themselves or 

the services that they provide, and to search for specific agents for services. 

2.3  Multi-Agent Approach to Day-Ahead Electricity Market 
Modeling 

The Day-Ahead electricity market is modeled as a multi-agent system with three 

types of agents interacting with one another. These agents are supplier agents, Load Serving 

Entities (LSEs), and a Market Operator (MO). On the morning of day D, the MO sends 

messages to all supplier agents and LSEs to ask them to participate in the Day-Ahead market. 

Upon receiving the messages, the supplier agents and LSEs reply with their supply offers and 

demand bids. During the afternoon, the MO runs a market-clearing algorithm (similar to an 

optimal power flow), to match supply to demand and determine dispatch schedules and 

LMPs. At the end of the process, the MO sends messages to supplier agents and LSEs to 

inform them the dispatch schedules and LMPs for day D+1. The interaction among the MO, 

LSEs and supplier agents is shown in Fig. 1. The multi-agent system described above is 

developed with the Java Agent DEvelopment Framework (JADE) platform. 

Figure 1.  Multi-Agent Day-Ahead Market Environment 
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2.3.1  Load Serving Entity Model 

LSEs purchase bulk power from the Day-Ahead market to serve load. Without loss of 

generality, it is assumed that LSEs do not have generation units and one LSE only serves 

load at one location in the power system. Suppose that the number of LSEs in the Day-Ahead 

market is J. On day D, LSE j submits a load profile for day D+1. This load profile specifies 

24 hours of MW power demand ( )LjP H , H = 0, 1 … 23.  

It is assumed that demand-side response is available to LSEs. The demand-side 

response works as follows. If the day D peak hour LMP, ( )Lj peakLMP H , at the bus where 

LSE j is serving load, is higher than a critical value, then LSE j reduces its peak hour demand 

for day D+1 by 2%. If this LMP does not exceed the critical value, LSE j will not curtail its 

peak hour demand. Therefore, each LSE has two states. If the LMP at its node is below the 

critical value, it is in state 0, i.e., 0LjS = , and it will submit a normal load profile for day D+1. 

If the LMP at its node is above the critical value, it is in state 1, i.e., 1LjS = , and it will submit 

a curtailed load profile for day D+1. 

2.3.2  Supplier Agent Model 

Supplier agents sell bulk power to the Day-Ahead market. For simplicity, it is 

assumed that each supplier agent has only one generation unit. However, this model can be 

extended to permit suppliers with multiple generation units. Suppose the number of supplier 

agents in the Day-Ahead market is I, and the MW power output of generator i in some hour 

H is Gip .Generator i has lower and upper limits denoted by minip and max ip for its hourly 

MW power output. For generator i, the hourly total production cost ( )i GiC p for production 

level Gip is represented by a quadratic form: 
2( )i Gi i Gi i Gi iC p a p b p F= ⋅ + ⋅ +                  (2.1) 

where ia , ib and iF  (pro-rated fixed cost) are given constants. By taking derivatives 

on both sides of (2.1), the marginal cost function for Generator i is obtained, i.e., 
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 ( ) 2i Gi i i GiMC p a b p= + ⋅ ⋅                  (2.2) 

On each day D, the supplier agents submit to the Day-Ahead market a supply offer 

for day D+1 that includes two components. The first component is its reported marginal cost 

function given by: 

( ) 2B B B
i Gi i i GiMC p a b p= + ⋅ ⋅                             (2.3) 

The second component is its hourly MW power output upper limit, denoted 

by max
i

Bp . Suppose, on day D, supplier agents submit their supply offers for day D+1 to the 

MO, and the market clearing program calculates LMPs and dispatch schedules. 

Let ( )GiLMP H denote the LMP for hour H at the bus where suppler i’s generation unit is 

located, and let * ( )
Gi

p H denote the MW power output for hour H in the dispatch schedule 

posted by the MO. Supplier agent i’s profit on day D is obtained by summing 24 hours of 

profits on that day: 
23

* *

0
[ ( ) ( ) ( ( ))]iD Gi Gi i Gi

H
p H LMP H C p Hπ

=

= ⋅ −∑                (2.4) 

The Accumulated profit of generator i on day D is given by: 

( ) ( 1)i i iDAP D AP D π= − +                             (2.5) 

2.3.3  Market Operator Model 

The MO for this Day-Ahead market is responsible for clearing the market based on 

the information submitted by LSEs and supplier agents. The MO uses a market clearing 

algorithm to determine the LMP at each bus and MW power output for each generation unit 

at each hour. Since only MW power is considered in this model, a DCOPF problem can be 

formulated as follows:  
2

1
min ( )

i i

I
B B

Gi Gi
i

a p b p
=

⋅ + ⋅∑                  (2.6) 

subject to 
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 0k gk dkP P P− + = , 1,... bk N=                 (2.7)

 maxH Fδ ≤                    (2.8)

 min maxB B
i Gi ip p p≤ ≤                  (2.9) 

 where bN denotes the total number of buses in the system, kP represents the net power 

injection at bus k, gkP denotes the total MW power generation at bus k, gkP is the total MW 

demand at bus k, H denotes the line flow matrix, δ denotes the vector of voltage angle 

differences, and maxF is the vector of maximum line flows. 

 The objective of the DCOPF is to minimize the total variable generation cost based 

on supplier offers and LSE bids. The constraints are MW power balance constraints for each 

bus 1,... bk N= , MW thermal limit constraints for each line, and MW production limits for 

each generator 1,...i I= . The DCOPF program of MATPOWER [23] applicable to large-scale 

power systems is used in this research. 

2.4  Summary 

This chapter provides an introduction to the multi-agent system technology by 

answering several basic questions, i.e., what is an agent, what is a multi-agent system, when 

and why are agents useful. In section 2.1.4, the agent oriented programming is compared 

with object oriented programming. Section 2.1.5 is an overview of the applications of multi-

agent system in four areas of power engineering field: Modeling and Simulation, Monitoring 

and Diagnostics, System Restoration and Reconfiguration, and System Controls. Some core 

concepts of the FIPA specifications are discussed in section 2.2. 

With the multi-agent system technology, the Day-Ahead electricity market is 

modeled as a multi-agent system with three types of agents: supplier agents, LSEs, and the 

Market Operator. Since JADE is an implementation of FIPA specification, it was used to 

develop the proposed multi-agent system. The models for supplier agents, LSEs, and MO are 

presented in detail in section 2.3.1-2.3.3. 
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CHAPTER 3.  MULTI-AGENT LEARNING ALGORITHMS 
 

3.1  Introduction 

A basic question that was often asked by researchers in the field of Artificial 

Intelligence (AI) is how to design a learning algorithm that allows a machine to learn about 

the environment in which it resides and to maximize its chances of success.  

Insightful observations and tools from statistics, computer science, psychology, 

cognitive science, and logic are utilized to develop learning algorithms that are implemented 

on machines in different contexts. Some of the key algorithms developed for single-agent 

learning are Artificial Neural Networks (ANN), Bayesian Learning (BL), Computational 

Learning Theory (CLT), Genetic Algorithms (GA), Analytical Learning (AL), and 

Reinforcement Learning (RL). The applications of these algorithms range from chess-play 

computer program Deep Blue that beats the world champion Garry Kasparov, to data mining 

programs that learn to approve bank loans to lower the bad loan rate, to autonomous cars that 

learn to drive safely from door to door. 

In recent years, multi-agent learning takes the place of single-agent learning and 

becomes an important issue of learning that attracts the attention of many researchers in both 

computer science and game theory. 

3.2  Literature Review 

Three major classes of learning techniques were developed—the first one is 

representative of work in game theory, the second one is typical in AI, and the last one seems 

to have drawn equal attention from both communities [24]. The three approaches are model-

based, model-free, and regret minimization approaches. 
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3.2.1  Model-based Approaches 

In model-based learning algorithms, the presence of other decision making agents in 

the learning environment is taken into account. It usually begins with some models of the 

opponents’ strategy, and then starts an iterative three-step learning process. First, it computes 

and plays the best action based on the model of opponents’ strategies. Then, it observes the 

opponent’s actions and updates the models of the opponents’ strategies. Afterwards, it goes 

back to the first step. 

The early model-based learning algorithm well known in game theory is called 

fictitious play. The model rests on traditional statistician’s philosophy of basing future 

decisions on the relevant past history [25]. The opponent is assumed to pick an action at each 

turn according to a stationary probability distribution function (PDF). The algorithm keeps 

track of opponent’s play, and chooses an action that is optimum against the estimates of the 

opponents’ PDF based on the relative frequencies. 

Fictitious play only allows the agent to exploit all the information that it has so far, 

and play the “optimum” action. The variants of fictitious play such as smooth fictitious play 

[26] and exponential fictitious play [27] allow the agent to explore other actions that is not 

“optimum”.  

3.2.2  Model-free Approaches 

In model-free approaches, Q-Learning [28] allows agents to learn how to act in a 

controlled Markovian domain with unknown transition functions. A controlled Markovian 

domain implies that the environment is Markovian in the sense that state transition 

probabilities from state x  to state y  only depends on x , y  and the action a  taken by the 

agent, and not on other historical information. It works by successively updating estimates 

for the Q-values of state-action pairs. The Q-value ( , )Q x a  is the expected discounted reward 

for taking action a  at state x and following an optimal decision rule thereafter. Once these 
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estimates have converged to the correct Q-values, the optimal action in any state is the one 

with the highest Q-value.  

By the procedure of Q-Learning, in the nth step the agent observes the current system 

state nx  , selects an action na , receives an immediate payoff nr , and observes the next system 

state ny . The agent then updates its Q-value estimates using a learning parameter nα and a 

discount factor γ [28] as follows: 

If nx x= and na a= , 

1 1( , ) (1 ) ( , ) [ ( )]n n n n n n nQ x a Q x a r V yα α γ− −= − + +                                                         (3.1) 

 Otherwise, 

 1( , ) ( , )n nQ x a Q x a−=                   (3.2) 

where 1 1( ) max{ ( , )}n nb
V y Q y b− −≡                                                                               (3.3)  

It is proven by Watkins in [29] that if (1) the state and action-values are discrete, (2) 

all actions are sampled repeatedly in all states, (3) the reward is bounded, (4) the 

environment is Markovian and (5) the learning rate decays appropriately, then the Q-value 

estimates converge to the correct Q-values with probability 1. 

The Q-Learning algorithm can be extended to the multi-agent environment by 

redefine the Q-values as a function of all the agents’ actions: 

1 1( , ) (1 ) ( , ) [ ( )]n n n n n n nQ x a Q x a r V yα α γ− −= − + +
r r

                                                        (3.4) 

However, in the contexts where the actions taken by other agents are unknown such 

as the electricity market, it is impossible to apply this variation of Q-Learning algorithm. 

Therefore, in the above stated contexts, the only option left is to extend the Q-Learning to the 

multi-agent environment by having each agent simply ignore the other agents and pretend the 

environment is Markovian. The theoretical proof of convergence to the correct Q-values no 

longer holds when an opponent adapts its strategy based on the past experience. It is 

reasonable to expect that such a strong convergence result no long holds, in a non-Markovian 

environment where each agent is learning others’ strategy. 
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3.2.3  Regret Minimization Approaches 

 In the regret minimization model, agents adjust their strategies probabilistically. This 

adjustment is guided by “regret measures” based on observations of the past period [30]. The 

assumption made in this model is that each agent knows the past history of all other agents, 

as well as its own payoff matrix. An instance of the no-regret learning algorithm is presented 

below. The regret of agent i  for playing the sequence of actions is instead of playing 

action ja , given that the opponents played the sequence is−  is defined as ( , )t
i j ir a s  [24]. 

1

( , ) ( , ) ( , )
t

t k k k
i j i i j i i i

k

r a s s R a s R s s− − −
=

= −∑                (3.5) 

At each round, an agent may either continue choosing the same strategy as in the previous 

round, or switch to other strategies that have positive regret with a probability proportional 

to ( , )t
i j ir a s . 

3.3  Modeling of Suppliers’ Learning Behavior by Q-Learning 

A Generation Company (GENCO) usually has several generation plants located at 

different buses of the system. For simplicity, Q-Learning is used to model electricity 

suppliers that are assumed to have only one generation unit. Nevertheless, by a similar 

approach, Q-Learning could be implemented for supplier agents with multiple generation 

units at different locations.  

A novel approach to the implementation of Q-Learning for a supplier agent is 

presented here. The supplier agent views the Day-Ahead market as a complex system with 

different states. The system state on day D, DX , is defined as a vector for the states of all 

LSEs.  Hence the state vector on day D can be expressed as 1 2{ , ,..., }D
L L LJX S S S= , where J is 

the number of LSEs. The cardinality of the state space is 2J  since each LSE has two states, 

i.e., reduced peak load or not based on demand-side response. Electricity suppliers might 

have market power. Thus, it is assumed that supplier agents are capable of forecasting the 

LSEs’ states. In other words, the state vector is predictable by the supplier agents. 
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The action domain of supplier agent i , iAD , is defined as a vector of bidding 

information. This vector consists of the marginal cost function parameters
i

Ba , 2
i

Bb⋅  and the 

hourly MW output upper limit max
i

Bp . The cardinality of the action domain, 
maxa bM M M× × , is given by the product of the number of possible 

i

Ba , 2
i

Bb⋅  and 

max
i

Bp values. 

Consider the beginning of each day D. A supplier agent first makes a prediction of the 

system state, which is represented by x . It next chooses an action according to a 

Gibbs/Boltzmann probability distribution, i.e., 
( , ) / ( , ) /( , ) /D D

i

Q x a T Q x b T
D

b AD
p x a e e

∈

= ∑                 (3.6) 

where DT , which depends on D, is a temperature parameter that models a decay over 

time. 

Having chosen an action a , the supplier agent will submit its supply offer to the MO. 

Once the market is cleared, the supplier agent will receive its reward, which is the profit for 

day D+1. Then the agent will use this reward to update its Q-value estimates according to 

equations (3.1) to (3.3). The Q-value estimates of an agent are said to have converged if 

under all states x the agent chooses some action with probability 0.99 or higher. If the Q-

value estimates of all the agents have converged, the simulation terminates. 

The parameters that are used to implement the Q-Learning algorithm are set in the 

following way: 

Discount factor 7.0=γ  

Learning parameter α for a state-action pair ( , )x a  is set to be ( , )1/ x aT ωα = , where 

( , )x aT is the number of times that action a  has been taken in state x. 

77.0=ω  

The temperature parameter DT  is given by: 9 61/ 1.7 10 ( )DT D−= × × , where D is the 

number of days that have currently been simulated. 
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The cardinality of the action domain is 444max ××=×× MMM ba , in which B
ia and 

B
ib range from 1 to 3 times their true values, and max

i

Bp ranges from 97% to 100% of the 

true upper limit.  

3.4  Summary 

In this chapter, the multi-agent learning techniques are organized into three categories: 

model-based approaches, model-free approaches and regret minimization approaches. 

Fictitious play, Q-Learning, and no-regret learning are described as representative of each of 

the approaches. Both model-based and regret minimization approaches assume that each 

agent knows all other agents’ historical actions. However, this assumption is not valid in the 

electricity market context. Therefore, Q-Learning in the model-free approaches is selected to 

model the learning behavior of electricity supplier agents. A novel approach to the 

implementation of Q-Learning for an electricity supplier agent considering a simple demand-

side response model of the Load Serving Entities is presented. 
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CHAPTER 4  CASE STUDIES AND RESULTS 
 

4.1  Test System 

The 5-bus transmission grid used here for simulation is taken from ISO-NE/PJM 

training manuals, where it is used to illustrate the determination of Day-Ahead market LMP 

solutions. A one-line diagram of the grid is shown in Fig. 2. Daily LSE load profiles are 

adopted from the dynamic 5-bus example in [2]; see Fig. 3. Line capacities, reactance levels, 

and generator cost data are also adopted from [2]. 

Figure 2.  5-Bus Transmission Grid 

Figure 3.  5-Bus Transmission Grid Daily Load Profiles 
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Detailed solution values for the scenario in which suppliers submit their true 

production data to the MO (“the no-learning scenario”) are given in [2].  

This study simulates two Q-Learning scenarios for this 5-bus test case. In the first 

scenario the LSEs have relatively low critical values for curtailing demand, whereas in the 

second scenario they have relatively high critical values. Simulation results for these learning 

scenarios are compared with the no-learning scenario.  

4.2  Numerical Results 

4.2.1  Review of Results from the No-Learning Scenario 

In the no-learning scenario analyzed in [2], each generator submits a supply offer that 

includes its true marginal cost function and its true generation upper limit. The MW 

production level of each generator and the LMP at each bus that are cleared by the MO based 

on true cost data from generators are depicted in Fig. 4 and Fig. 5. 

Figure 4.  5-Bus Simulation Results of 24-Hour MW Production (No-Learning 

Scenario) 
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24-Hour LMPs: No Learning
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Figure 5.  5-Bus Simulation Results of 24-Hour LMPs (No-Learning Scenario) 

Generators 3 and 5 are the two largest units in the system with a combined capacity 

1120MWs. The combined capacity of the three other small units is 410MW. The large units 

together with the high peak hour demand (1153.59MW) gives generators 3 and 5 potential 

market power. Note that the congestion between bus 1 and bus 2 exists for all 24 hours. This 

causes LMP separation between bus 1 and bus 2.  During hour 17, the power flow on the line 

between buses 1 and 2 hits its upper thermal limit, and Generator 3 is dispatched at its upper 

production limit. Therefore, generator 4 that has the highest variable generation cost has to be 

dispatched to meet the demand. This results in a huge price spike at buses 2 and 3 at hour 17 

that is about double of their LMP values at hour 16. 

4.2.1  Results from the Two Learning Scenarios 

Assume that the generators do not have to report their true marginal costs to the MO. 

Instead, the profit-seeking generators use Q-Learning to learn how to bid strategically to 

make more profits. 

Since the system can be in several states, it does not have to stay in one single state in 

the long term. Rather, it may visit some states periodically or it may not even converge to a 
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periodic pattern. Therefore, one has to define convergence in a different way. The Day-

Ahead market is said to be convergent if, at any state, each generator chooses one action in 

that state with probability 0.99 or higher.  

Due to the probabilistic nature of the learning algorithm, the simulation does not 

converge to the same values for each run. In order to average out the random effects across 

different runs, 10 simulation runs are performed for each scenario and the mean values from 

the runs are reported. 

In scenario one, LSEs have little tolerance for high LMPs.  Their critical values for 

curtailing demand are only slightly higher than the LMPs that they will pay in the no-

learning scenario. These critical values are given in Table 1.  

Table 2 shows the number of days before convergence and final system states for 10 

simulation runs. As can be seen, most of the time the system stays in state 8, in which every 

LSE is curtailing demand every day. It implies that generators are using very aggressive 

bidding strategies, and making full use of their market power. In this case, generators 

actually are making more profits by moving the system to state 8 because, even in the 

situation of less demand in peak hour the generators are still able to raise the price higher 

than the critical values of the LSEs. 

Table 1.  Critical Values for Learning Scenario 1  

 LSE1  LSE2 LSE3 
  Critical Value ($/MWH) 115.5   98.0  47.5 

Table 2.  Number of Days before Convergence and Final States in Scenario 1 

Simulation Run 1 2 3 4 5 6 7 8 9 10 
# of Days before 
Convergence      

83 189 81 77 77 189 78 81 86 230 

Final state(s) 8 2↔8 8 8 8 2↔8 8 8 8 4↔8 

2↔8 means the system visits state 2 and 8 periodically 
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In all 10 runs, all five generators converge by day 230 as shown in Table 2. The 

average number of days before convergence is 117.1. Note that in some cases the system 

moves back and forth between two states in a pattern of convergence.    

In scenario two, the LSEs have high tolerance for high electricity prices. Their critical 

values for curtailing demand are higher than the critical values in scenario one. The critical 

values in this case are presented in Table 3. Table 4 shows the number of days before 

convergence and the final system states for the 10 simulation runs. 

Table 3.  Critical Values for Learning Scenario 2  

 LSE1 LSE2 LSE3 

Critical Value ($/MWH) 135.5 115.5 55.5 

Table 4.  Number of Days before Convergence and Final States in Scenario 2 

Simulation Run 1 2 3 4 5 6 7 8 9 10 
# of Days before 

Convergence 
222 325 259 177 236 222 252 227 226 241

Final state 1↔8 1 1↔8 2↔8 1↔8 1↔8 1↔8 1 1↔8 1↔8

In all 10 runs, all five generators converged by day 325. The average number of days 

before convergence is 238.7. Note that, most of the time, the system ends up visiting state 1 

and state 8 in turn. The day of convergence comes later if the system keeps visiting more 

than one state. From the results it is seen that, in fact, Q-Learning allows the generators to 

take advantage of the LSEs, whose demand-side response only has one day memory. First, 

by submitting low supply offers, the generators make sure that the LSEs do not curtail their 

demand tomorrow. Afterward they submit high supply offers and profit significantly from 

the LSEs that decrease their peak hour demand tomorrow. Then the generators submit a low 

supply offer again and so on. The simulation results show that Q-Learning helps generators 

make more profits by sacrificing today’s benefit for more profits in the future. This scenario 

is a good illustration of anticipatory reinforcement learning. 
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Differences between the learning scenarios and the no learning scenario are discussed 

below. Furthermore, it is desirable to know to what extent Q-Learning is capable of helping 

generators exercise market power. Fig. 6 and 7 depict the mean values of MW production in 

learning scenarios 1 and 2, along with the corresponding simulation results obtained in the 

no-learning scenario. In the no-learning scenario, generator 4 is only dispatched at the peak 

hour. In both learning scenarios, in some simulation runs generator 4 is not dispatched. This 

is true when each generator is submitting an aggressive supply offer so that generator 4 is 

still the most expensive. However, in some simulation runs generator 4 chooses to submit 

less aggressive supply offers so that it becomes a relatively cheaper unit. Therefore, the 

average effect in the learning scenarios is that generator 4 is dispatched to some extent in 

each hour and has a steep increase in power output during the peak hour as it does in the no-

learning scenario. 

Figure 6.  5-Bus Simulation Results of 24-Hour MW Production (Learning 

Scenario 1) 
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Figure 7.  5-Bus Simulation Results of 24-Hour MW Production (Learning 

Scenario 2) 

The 24-hour mean LMP values for the learning scenarios 1 and 2 are shown in Fig. 8 

and Fig. 9 along with the 24-hour LMP values for the no-learning scenario. In the no-

learning scenario, the price spike at hour 17 is obvious. Although the LMPs in the learning 

scenarios 1 or 2 are substantially higher than for no-learning, the price fluctuation around the 

peak hour is much less. This finding is similar to the finding of Sun and Tesfatsion [2], who 

used reactive reinforcement learning to model the learning process of generators. However, 

since the sets of actions are different, one cannot draw a definitive conclusion about the 

learning techniques used in the two studies. 

        Figure 8.  5-Bus Simulation Results of 24-Hour LMPs (Learning Scenario 1) 

24-Hour MW Production: Learning Scenario 2

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

M
W

 P
ro

du
ct

io
n 

(M
W

s)

PG1
PG2
PG3
PG4
PG5

24-Hour LMPs: Learning Scenario 1

0

20

40

60

80

100

120

140

Ho ur

LM
P 

($
/M

W
h) LM P1

LM P2
LM P3
LM P4
LM P5



www.manaraa.com

 27 

 

Figure 9.  5-Bus Simulation Results of 24-Hour LMPs (Learning Scenario 2) 

Figure 10 shows that the mean of the total profit gained by the generators in each 

learning scenario is much higher than what they made in the no-learning scenario. In fact, in 

the no-learning scenario the generators are not able to recover their fixed cost because they 

only covered their variable costs in their supply offers. This fact demonstrates that Q-

Learning helps the generators to learn to exercise their potential market power to maximize 

their profits. It can be observed in Fig 10 that, during peak hour 17, the generators are 

making more profits in learning scenario 2 than they are in learning scenario 1. The high 

level of tolerance for price spikes of the LSEs in learning scenario 2 gives the generators 

more opportunities to manipulate the market. 
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Figure 10. 5-Bus Transmission Grid Simulation Results of 24-Hour Total Profits 

(No-Learning Compared with Learning Scenarios 1 and 2) 

4.3  Summary 

In this chapter the simulation results of a 5-bus test case in no-learning scenario and 

both of the learning scenarios are demonstrated and compared. It has been shown that the 24-

hour LMPs in the learning scenarios are significant higher than that in the no-learning 

scenarios due to strategic gaming of the supplier agents. However, the volatility of the 24-

hour LMPs in the learning scenarios are lower than that in the no-learning scenario. In 

addition, the MW output of peak unit 4 in the learning scenarios is higher than that in the no-

learning scenario, which leads to market inefficiency. Simulation results show that Q-

Learning helps electricity suppliers learn how to bid strategically under the condition of a 

simple demand-side response model. With Q-Learning capabilities, electricity suppliers find 

their way to make more profits in the long term by sacrificing their immediate profits. 
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CHAPTER 5  CONCLUSIONS AND FUTURE WORK 
 

5.1  Conclusions 

This research provides a method to model the Day-Ahead electricity market by a 

multi-agent system. The multi-agent system includes three types of interacting agents: 

supplier agents, LSEs and MO. The supplier’s objective is to maximize its profit over a 

planning horizon. The learning behavior of the supplier agent is modeled by Q-Learning. 

LSEs in the model are assumed to have a simple demand-side response.  

Simulation results on a 5-bus transmission grid show that Q-Learning help electricity 

suppliers learn how to bid strategically in a market environment with a simple demand-side 

response model. With Q-Learning capabilities, electricity suppliers find a way to make more 

profits in the long term by sacrificing their immediate profits. Without communicating with 

one another, every supplier agent chooses to bid higher than their marginal cost, which in 

turn yields significantly higher LMPs at each bus. In addition, the volatility of the 24-hour 

LMPs in the learning scenarios is lower than that in the no-learning scenario, which makes it 

harder for the MO to mitigate the potential use of market power. 

Q-Learning has some limitations. It assumes a finite domain of actions. Also, the Q-

Learning model developed in this research assumes that electricity suppliers do not explicitly 

take into account the presence of other electricity suppliers in the environment. Therefore the 

results may not be accurate when multiple agents interact in a realistic market environment. 

These limitations should be relaxed in the future research. 
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5.2  Future Work 

In the future work, the following extensions will give useful results and insights into 

the design of market rules and the strategic bidding behaviors of market participants: 

1. The actual system’s demand data will be used instead of the time invariant load 

profile. In this case, the way Q-Learning is implemented for supplier agents’ should be 

reexamined. The forecasted demand should also be considered in the state domain. Larger 

power system models will be used as a test system to study the network effects on the market.  

 2. The ancillary service market will be incorporated into the current market 

framework. Market participants will also be able to bid into the ancillary service market to 

provide regulation up, regulation down, spinning reserve, and non-spinning reserve services. 

Different designs of the ancillary service market will be tested. 

 3. Different learning algorithms with different parameters will be tested on the 

supplier agents. Simulation results will be available on which learning algorithm is better 

suited for what type of supplier agents. The effect of market power can be further 

investigated, if the supplier agents are assumed to own multiple plants.  

 4. The price sensitive demand could be included to test its impact on the market 

efficiency. In addition, the market clearing algorithm should be modified to minimize the 24-

hour power purchasing cost instead of optimizing each hours’ purchasing cost separately. 

 5. The Transmission Company (TRANSCO) may be included as another type of 

agent to study the long term effects of transmission planning and expansion on the electricity 

market. The supplier agents will be assumed to be able to invest in new power plants based 

on the long-term economic signals. 
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